ROSA: Robust sparse adaptive channel estimation in the presence of impulsive noises
نویسندگان
چکیده
Based on the assumption of Gaussian noise model, conventional adaptive filtering algorithms for reconstruction sparse channels were proposed to take advantage of channel sparsity due to the fact that broadband wireless channels usually have the sparse nature. However, state-of-the-art algorithms are vulnerable to deteriorate under the assumption of non-Gaussian noise models (e.g., impulsive noise) which often exist in many advanced communications systems. In this paper, we study the problem of RObust Sparse Adaptive channel estimation (ROSA) in the environment of impulsive noises using variable step-size affine projection sign algorithm (VSS-APSA). Specifically, standard VSS-APSA algorithm is briefly reviewed and three sparse VSS-APSA algorithms are proposed to take advantage of channel sparsity with different sparse constraints. To fairly evaluate the performance of these proposed algorithms, alpha-stable noise is considered to approximately model the realistic impulsive noise environments. Simulation results show that the proposed algorithms can achieve better performance than standard VSS-APSA algorithm in different impulsive environments.
منابع مشابه
A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملIMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model
Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorate...
متن کاملMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملSparsity-Aware Recursive Maximum Correntropy Criteria Adaptive Filtering Algorithm
To address sparse channel estimation problem in nonGaussian impulsive noise environment, a recursive maximum correntropy criteria (RMCC) algorithm using sparse constraint is proposed to combat impulsive-inducing instability. Specifically, the recursive algorithm on the correntrioy with a forgetting factor of error at iteration is to solve steady-state error for improving the maximum correntropy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.01105 شماره
صفحات -
تاریخ انتشار 2015